Monoid objects

As an example of the microcosm princple , one can define a monoid (or monoid object) in any monoidal category. Similarly, commutative monoid objects can be defined in any symmetric monoidal category. These are useful special cases of algebras of a PRO in a monoidal category and of algebras of a PROP in a symmetric monoidal category, respectively.

Examples

Table 1: My favorite examples of monoids in monoidal categories
Monoidal category \(\mathcal{V}\) Monoid object in \(\mathcal{V}\)
\((\mathbf{Set},\times,1)\) monoid
\((\mathbf{Mon},\times,1)\) commutative monoid, by Eckmann-Hilton
\((\mathbf{Proset},\times,1)\) preordered monoid, aka monoidal proset
\((\mathbf{Poset},\times,1)\) partially ordered monoid, aka monoidal poset
\((\mathbf{SupLat},\otimes,I)\) (unital) quantale
\((\mathbf{Cat},\times,1)\) strict monoidal category
\((\mathbf{CMon},\otimes,\mathbb{N})\) rig
\((\mathbf{Ab},\otimes,\mathbb{Z})\) (unital) ring
\((\mathbf{Mod}_R,\otimes,R)\) (associative, unital) algebra over ring \(R\)
\((\mathbf{Vect}_k,\otimes,k)\) algebra over field \(k\)
\((\mathbf{Ban}_k,\otimes,k)\) (unital) Banach algebra
\((\mathbf{Species},\circ,I)\) (symmetric) operad
\((\mathbf{End}_C,\circ,1_C)\) monad on category \(C\)

Generalizing the last example, a monad in a bicategory \(\mathcal{B}\) is an object \(B \in \mathcal{B}\) together with a monoid in \((\mathbf{End}_B,\circ,1_B)\). So, ordinary monads (monads on a category) are monads in \(\mathbf{Cat}\), the 2-category of categories. As another example, a monad in the bicategory of spans is a category! Specifically, for any set \(X\), a monoid in \(\mathbf{Span}(\mathbf{Set})(X,X)\) is a category with object set \(X\).

Literature

  • Street, 2007: Quantum groups: A path to current algebra, Ch. 15: Monoids in tensor categories (doi)
    • Definition and theory of the 2-category \(\mathbf{Mon}(\mathcal{V})\) of monoids in a monoidal category \(\mathcal{V}\)