Foundations of mathematics

Foundations of mathematics , especially from the practical point of view .

Literature

General

  • Taylor, 1999: Practical Foundations of Mathematics (online )
  • Sommaruga, ed., 2011: Foundational Theories of Classical and Constructive Mathematics (doi)
  • Awodey, 2011: From sets to types, to categories, to sets (doi, pdf)

Homotopy type theory and univalent foundations

Philosophical references are below; for the mathematics, see the homotopy type theory page.

  • Ladyman & Presnell, 2014: A primer on HoTT: Part 1: Formal type theory (pdf)
  • Ladyman & Presnell, 2018: Does homotopy type theory provide a foundation for mathematics? (doi)

Category theory

Introductions

  • Makkai, 1998: Towards a categorical foundation of mathematics (pdf)

Philosophy surveys

  • Landry & Marquis, 2005: Categories in context: Historical, foundational, and philosophical (doi)
  • Marquis, 2014, SEP: Category theory, Sec 3: Philosophical significance (online )
    • Useful bibliography on categorical foundations
  • Shapiro, IEP: Mathematical structuralism (online )
    • References on connection between structuralism and category theory

Philosophy papers

  • Feferman, 1977: Categorical foundations and foundations of category theory (doi)
  • Awodey, 1996: Structure in mathematics and logic: a categorical perspective (doi)
  • Hellman, 2003: Does category theory provide a framework for mathematical structuralism? (doi, pdf)
  • Awodey, 2004: An anwser to Hellman’s question: ’Does category theory provide a framework for mathematical structuralism?’ (doi, pdf)
  • McLarty, 2004: Exploring categorical structuralism (doi)
  • Shapiro, 2005: Categories, structures, and the Frege-Hilbert controversy: The status of meta-mathematics (doi, pdf)